Contents
LONGITUDINAL vs TRANSVERSE WAVES
Longitudinal waves are usually considered to be like sound waves in which the producer of the wave creates compressions and rarefications alternately (as is the case with a vibrating string) which move away from the source. Transverse waves are waves moving outward from the source but acting at 90 degrees from the direction of outward movement.
Light half-waves are technically longitudinal in the sense that the nether is pulled to create a rarefication (but no compression) which moves outward from the source. This pull is at 45 degrees from the direction of outward travel and has two vectors which, when combined, give the resultant 45 degree wave. One vector is transverse (the tangential vector) and other (the radial vector) is parallel to the direction of wave travel outward, so the vectors are at 90 degrees to one another. The vector with motion parallel to the outward travel (radial vector) never changes much because each half-wave has the same radial acceleration. So I believe the radial vector may be discounted for practical purposes. The tangential vector alternates direction 180 degrees from one half-wave to the next and creates the transverse waves we call light.
If there are other waves created by the electron, I am not aware of them. However, some physicists in Russia and perhaps in other places talk of longitudinal light waves. Perhaps this is the same type of wave mentioned above and semantics is the only problem - or perhaps there are waves other than the one mentioned above.
The EPR experiments mentioned and explained elsewhere appear to many to indicate that light waves exist which are transmitted instantaneously. According to our research, this is a phenomenon that works in a different manner entirely and is not caused by a longitudinal light wave.
Contents - Next